аксиома - traducción al ruso
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

аксиома - traducción al ruso

УТВЕРЖДЕНИЕ, КОТОРОЕ ПРИНИМАЕТСЯ ЗА ИСТИНУ БЕЗ ДОКАЗАТЕЛЬСТВ
Постулат; Аксиомы; Постулят; Постулирование; Постулаты

аксиома         
f.
axiom, postulate; аксиома выбора, axiom of choice
постулат         
m.
postulate, axiom, hypothesis; постулат выбора, axiom of choice; метод постулатов, postulational method
псевдометрика         
МНОЖЕСТВО, СНАБЖЁННОЕ МЕТРИКОЙ (ФУНКЦИЕЙ РАССТОЯНИЯ)
Метрика (метрическая геометрия); Псевдометрика; Метрическая топология; Расстояние в математике; Метрическое векторное пространство; Эквивалентная метрика; Геодезическое пространство; Геодезическое метрическое пространство; Метрическая компонента; Аксиома симметрии; Аксиома тождества; Аксиома треугольника; Аксиомы расстояния; Линейное метрическое пространство
f.
pseudometric, semimetric, pseudovaluation

Definición

Аксиома
(греч. axíōma - удостоенное, принятое положение, от axióō - считаю достойным)

положение некоторой данной теории, которое при дедуктивном построении этой теории не доказывается в ней, а принимается за исходное, отправное, лежащее в основе доказательств других предложений этой теории. Обычно в качестве А. выбирают такие предложения рассматриваемой теории, которые являются заведомо истинными или могут в рамках этой теории считаться истинными.

Возникнув в Древней Греции, термин "А." впервые встречается у Аристотеля, а затем через труды последователей и комментаторов Евклида прочно входит в геометрию. В средние века господство аристотелевской философии обусловило его проникновение в другие области науки, а через неё и в обыденную жизнь. А. стали называть такое общее положение, которое, будучи совершенно очевидным, не нуждается в доказательстве. Природу этой очевидности видели, следуя взглядам, идущим ещё от Платона, в прирождённости человеку таких основных истин, как математическая А. Учение И. Канта об априорности последних, т. е. о том, что они предшествуют всякому опыту и не зависят от него, было кульминацией таких взглядов на А. Первым крупным ударом по взгляду на А. как на вечные и непреложные "априорные" истины явилось построение Н. И. Лобачевским неевклидовой геометрии.

Критикуя взгляды Гегеля на логическую А. (на фигуры аристотелевских силлогизмов), В. И. Ленин писал: "...практическая деятельность человека миллиарды раз должна была приводить сознание человека к повторению разных логических фигур, дабы эти фигуры могли получить значение аксиом" ("Философские тетради", 1969, с. 172). Именно в обусловленности многовековым человеческим опытом, практикой, включая сюда также и эксперимент, и опыт развития науки,- причина очевидности А., рассматриваемых как истины, не нуждающиеся в доказательстве.

Вместе с тем крушение взгляда на А. как на "априорные" истины привело к раздвоению понятия А. Всё возрастающая в связи с запросами практики необходимость экспериментировать в области построения новых теорий, заменять одну А. другой, а также их относительность, зависимость от ранее встречающихся конкретных условий опыта и уровня развития науки, приводящая к невозможности выбрать раз навсегда и навечно в качестве А. такие положения, которые будут истинны абсолютно во всех условиях, - всё это обусловило появление понятия А. в смысле, несколько отличном от традиционного. Понятие А. в этом смысле зависит от того, построение какой теории рассматривается и как оно проводится. А. данной теории при этом называются просто те предложения этой теории, которые при данном построении её как дедуктивной теории принимаются за исходные, притом совершенно независимо от того, сколь они просты и очевидны. Более того, уже из опыта, например, построения различных неевклидовых геометрий и их последующего истолкования и практического использования стала ясной невозможность при построении (или аксиоматизации) той или иной теории каждый раз требовать заранее истинности её А.

С созданием развитого аппарата математической логики связано дальнейшее развитие понятия А. В формальном исчислении А. является уже не предположением некоторой содержательной научной теории, а просто одной из тех формул, из которых по правилам вывода этого исчисления выводятся остальные доказуемые в нём формулы ("теоремы" этого исчисления). См. также Аксиоматический метод и литературу при этой статье.

А.В. Кузнецов.

Wikipedia

Аксиома

Аксио́ма (др.-греч. ἀξίωμα «утверждение, положение», от άξιοω- считаю достойным, настаиваю, требую), или постула́т (от лат. postulatum — букв. требуемое) — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами.

Ejemplos de uso de аксиома
1. Есть некая аксиома (как любая аксиома - недоказуемая): людям надо стараться говорить правду.
2. Аксиома на то и аксиома, чтобы ее не нужно было доказывать. 10.
3. - Голкипер - полкоманды - это спортивная аксиома...
4. - Макроэкономическая стабильность - это уже аксиома.
5. Аксиома: стержень сотрудничества - взаимная заинтересованность.
¿Cómo se dice аксиома en Inglés? Traducción de &#39аксиома&#39 al Inglés